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1. Introduction

The purpose of this paper is to describe a numerical technique for solving the magnetohydrodynamic (MHD) equations in
heterogeneous axisymmetric domains. The MHD approximation provides the simplest description of the dynamical coupling
between matter (described as a fluid) and the electromagnetic field. Denoting by U the characteristic hydrodynamic velocity
scale, the MHD limit we refer to corresponds to U � c, where c is the speed of light. In this context, the displacement currents
are neglected and the electromagnetic waves are filtered out. We refer to [2,8] for the asymptotic analysis of this problem.
We particularly focus our attention on domains that can be decomposed into regions with nonzero conductivity and regions
. All rights reserved.
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with zero conductivity. Moreover, the conducting regions can be decomposed into solid and fluid parts. Fulfilling the
continuity conditions of the magnetic field across interfaces between media of different conductivities, including insulators,
is an obstacle for analytical and numerical methods. The main application we have in mind is the dynamo action in the lab-
oratory or in astrophysical objects. We particularly focus our attention on axisymmetric domains, which are of widespread
interest.

This work is the follow-up of [21] where we described a technique for solving the Maxwell part of the problem. In the
present work, we address the full problem, i.e., that of solving the Navier–Stokes and the Maxwell equations simultaneously
in realistic heterogeneous configurations. To benefit from the axisymmetry of the domain, we use finite elements in the
meridian plane and Fourier modes in the azimuthal direction in the spirit of [31,33,21]. Parallelization is made with respect
to the Fourier modes. Continuity and other transmission conditions across interfaces are enforced using an interior penalty
technique à la Nitsche [28] and Dupont–Douglas [14]. The main originality of the technique is that it can handle heteroge-
neous media.

The performance of the code is evaluated on various test cases. We present calculations of hydrodynamic and hydromag-
netic instabilities in a periodic setting and a finite Taylor–Couette configuration. The Taylor–Couette flow is used in kine-
matic dynamo computations and a Hopf bifurcation towards a magnetic structure of typical length scale twice that of the
velocity field is discovered. The nonlinear dynamo regime is studied as well. Periodic and no-slip boundary conditions are
shown to give rise to very different behaviors, thus shedding some doubts on the relevance of dynamo computations done
assuming periodicity or other ad hoc boundary conditions.

The paper is organized as follows. We introduce the setting and a weak formulation of the problem under consideration in
Section 2. The discretization technique is described in Section 3, where we give details on the time and space discretization,
on the parallelization and on the interior penalty approximation technique. Section 4 focuses on validation tests involving a
kinematic and a full dynamo. Concluding remarks are reported in Section 5.

2. The continuous problem

2.1. The geometric setting

Let us consider a bounded domain X � R3. The boundary of X is denoted by C ¼ @X and is henceforth assumed to be at
least Lipschitz continuous. X is assumed to be partitioned into a conducting region (subscript c) and an insulating region
(subscript v) as follows:
X ¼ Xc [Xv ; Xc \Xv ¼ ;: ð2:1Þ
Xc is referred to as the conducting domain and Xv is referred to as the non-conducting domain. The conducting domain is
further assumed to be partitioned into a fluid region Xcf and a solid region Xcs:
Xc ¼ Xcs [Xcf ; Xcs \Xcf ¼ ;: ð2:2Þ
The interface between the conducting region and the non-conducting region is denoted by
R ¼ @Xc \ @Xv : ð2:3Þ
To easily refer to boundary conditions, we introduce
Cc ¼ C \ @Xc; Cv ¼ C \ @Xv ; Cf ¼ @Xcf : ð2:4Þ
Note that C ¼ Cv [ Cc . Moreover, we denote by C0
v the connected component of @Xv that contains Cv . We assume that @Xv

has J þ 1 connected components, say
C0
v ;C

1
v ; . . . ;CJ

v : ð2:5Þ
Observe that R ¼ ðC0
v n Cv Þ [ C1

v [ � � � [ CJ
v .

The notation is illustrated in Fig. 1 on two examples. The vertical dashed line represents the symmetry axis. Only the
meridian section of each region is shown. For the setting in the left panel (a) we have J ¼ 2 (3 conducting torii) and
R ¼ ðC0

v n CvÞ [ C1
v [ C2

v . For the domain in the right panel (b) we have J ¼ 1, C0
v ¼ Cv , Cc ¼ ; and R ¼ C1

v .

2.2. The PDE setting

The time evolution of the fluid occupying Xcf is modeled by the incompressible Navier–Stokes equations and the electro-
magnetic field in X is modeled by the Maxwell equations in the MHD limit. The conducting fluid and the electromagnetic
field interact through the Lorentz force. The set of equations describing the situation is the following:
@tuþ ðu � rÞu� mDuþ 1
qrp ¼ 1

q ðr �HÞ � lH in Xcf ;

r � u ¼ 0 in Xcf ;

ujt¼0 ¼ u0 in Xcf ; ujCf
¼ d;

8><>: ð2:6Þ



Fig. 1. Two examples of computational domains X with various boundaries. The shaded regions constitute the conducting domain Xc , the non-shaded
domain is vacuum Xv .

J.-L. Guermond et al. / Journal of Computational Physics 228 (2009) 2739–2757 2741
l@tH ¼ �r� E in X

r�H ¼ rðEþ ~u� lHÞ þ js in Xc;

0 in Xv ;

(
r � E ¼ 0 in Xv

E� njC ¼ a; Hjt¼0 ¼ H0 in X;R
Ci

v
E � n ¼ 0; 1 6 i 6 J;

8>>>>>>>>><>>>>>>>>>:
ð2:7Þ
where n is the outward normal on C. For the sake of simplicity of the presentation we consider only the natural boundary
condition E� njC ¼ a for the time being. An essential boundary condition H� njC ¼ a can be imposed as an alternative; we
refer to Section 2.5 for more details on boundary conditions.

The independent variables are space and time. The dependent variables are the velocity field of the fluid, u, the pressure
in the fluid, p, the magnetic field, H and the electric field, E. The quantity ~u is an extension of u on Xc , i.e., ~u is equal to u on
Xcf and is prescribed in Xcs. It is common to set ~u to zero in Xcs, but if some parts of the solid are rotating about the symmetry
axis ~u is prescribed to be equal to the solid rotation velocity in the regions that rotate. The data are u0, H0, d, a and js: u0 and
H0 are initial conditions; d and a are boundary data; js is an externally imposed distribution of current. The data are assumed
to satisfy all the usual compatibility conditions, i.e., r � ðlH0Þ ¼ 0, r � u0 ¼ 0, u0jCf

¼ djt¼0, etc. The physical parameters are
the kinematic viscosity m, the fluid density, q, the magnetic permeability, l and the conductivity, r; m and q are constant,
whereas l and r depend on space and l is smooth.

In the above formulation the displacement currents represented by the term �@tE in the Ampère–Maxwell equation have
been neglected due to the fact that u scales like U , where the scale of interest U is such that U=c is extremely small.

Observe that the conditions r � EjXv
¼ 0 and

R
Ci

v
E � n ¼ 0, 1 6 i 6 J are what is left from the Ampère–Maxwell equation

when passing to the limit to zero on the ratio U=c assuming that there is no electrostatic charge distributed in the domain.
These extra conditions ensure that E is uniquely defined, i.e., they have no effect on H. Note that the condition

R
C0

v
E � n ¼ 0

need not be enforced since it is a consequence of the J other conditions together with E being solenoidal. We refer to [8,2] for
more details on the asymptotic analysis leading to (2.7).

When r is uniformly positive over X, i.e., Xc ¼ X, an evolution equation for H can be obtained after eliminating the elec-
tric field. This short cut is no longer possible when Xv is non-trivial and determining the complete solution, including the
electric field, is no longer straightforward.

We henceforth assume that the conductivity rðxÞ is zero in Xv and is bounded from below and from above in Xc by po-
sitive constants. We also assume that the restrictions of lðxÞ to Xc and Xv are smooth functions, respectively; i.e., l can be
discontinuous across the interface R. We are currently developing a technique to account for discontinuities of l in the
conductors.

2.3. Non-dimensionalization of the equations

We now non-dimensionalize the problem. We denote by L and U the reference length and velocity scales, respectively.
Our basic assumption is that U � c, where c is the speed of light. The reference (advective) time scale is T :¼ L=U . The fluid
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density is assumed to be a constant q and the reference pressure scale is P :¼ qU2. The reference magnetic permeability and
electric conductivity are denoted by l0 and r0, respectively. We choose the reference scale for the magnetic field to be so
that the reference Alfvén speed is one, i.e., H :¼ U

ffiffiffiffiffiffiffiffiffiffiffi
q=l0

p
. The reference scale for the electric field is set to be E :¼ l0HU.

The source current js and the data u0, d, H0, a are non-dimensionalized byHL�1, U, U ,H andH, respectively. We are left with
two non-dimensional parameters which we refer to as the dynamic Reynolds number, Re and the magnetic Reynolds num-
ber, Rm, which are defined as follows:
Re :¼ UL
m
; Rm :¼ ULr0l0: ð2:8Þ
Henceforth we abuse the notation by using the same symbols for the non-dimensional and the corresponding dimensional
quantities. The non-dimensional set of equations is as follows:
@tuþ ðu � rÞu� R�1
e Duþrp ¼ ðr�HÞ � lH in Xcf ;

r � u ¼ 0 in Xcf ;

ujt¼0 ¼ u0 in Xcf ; ujCf
¼ d;

8><>: ð2:9Þ

l@tH ¼ �r� E in X;

r�H ¼ RmrðEþ ~u� lHÞ þ js in Xc;

0 in Xv ;

(
r � E ¼ 0 in Xv ;

E� njC ¼ a; Hjt¼0 ¼ H0 in X;R
Ci

v
E � n ¼ 0; 1 6 i 6 J;

8>>>>>>>>><>>>>>>>>>:
ð2:10Þ
where r and l are the relative conductivity and permeability, respectively.

2.4. Introduction of / and elimination of E

In addition to the above hypotheses on X, we henceforth assume that the initial data H0 is such that r�H0jXv
¼ 0. We

also assume that either Xv is simply connected or there is some mechanism that ensures that the circulation of H along any
path in the insulating media is zero. The conditionr�HjXv

¼ 0 then implies that there is a scalar potential /, defined up to
an arbitrary constant, such that HjXv

¼ r/. Moreover, we can also define /0 such that H0jXv
¼ r/0. We now define
H ¼ Hc in Xc;

r/ in Xv ;

�
l ¼

lc in Xc;

lv in Xv

�
ð2:11Þ
and we denote by nc and nv the outward normal on @Xc and @Xv , respectively. It is possible to eliminate the electric field
from the problem (see e.g. [21] for the details) and we finally obtain:
lc@tH
c ¼ �r� ðR�1

m r�1ðr �Hc � jsÞ � ~u� lcHcÞ in Xc;

lv@tD/ ¼ 0 in Xv ;

ðR�1
m r�1ðr �Hc � jsÞ � ~u� lcHcÞ � nc ¼ a on Cc;

lv@nv ð@t/Þ ¼ �nv � r � ðnv � aÞ on Cv ;

Hc � nc þr/� nv ¼ 0 on R;

lcHc � nc þ lvr/ � nv ¼ 0 on R;

Hcjt¼0 ¼ Hc
0; /jt¼0 ¼ /0:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð2:12Þ
Observe that the operator nv � r � ð�Þ involves only tangential derivatives; hence, it is meaningful to have it acting on the
field nv � a which is only defined on C. Note also that ðlcHc � nc þ lvr/ � nvÞjR ¼ 0 expresses the continuity of the normal
component of the magnetic induction across R. This equation is a consequence of the continuity of the tangential component
of the electric field. If the electric field is needed, it is computed in the conducting domain by using Ohm’s law and it is deter-
mined in the non-conducting medium by solving the Cauchy–Riemann problem: r� Ev ¼ �lv@tr/, r � Ev ¼ 0,
Ev � nv jR ¼ �Ec � ncjR, Ev � nv jCv

¼ a and
R

Ci
v

Ev � nv ¼ 0, 1 6 i 6 J. Note that (2.12) does not involve the Ci
v ’s, 1 6 i 6 J.

2.5. Weak formulation

Finding a weak formulation of the Navier–Stokes equations does not pose any particular difficulty, see e.g. [36]. We define
the Hilbert spaces
H1ðXcf Þ ¼ v 2 L2ðXcf Þ;rv 2 L2ðXcf Þ
n o

; ð2:13Þ
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L2R
¼0ðXcf Þ ¼ q 2 L2ðXcf Þ;

Z
Xcf

q ¼ 0

( )
; ð2:14Þ

H1
0ðXcf Þ ¼ v 2 H1ðXcf Þ; vjCf

¼ 0
n o

; ð2:15Þ
equipped with the canonical norms. The Navier–Stokes problem then consists of finding u 2 L2ðð0;þ1Þ; H1ðXcf ÞÞ and
p 2 L2ðð0;þ1Þ; L2R

¼0ðXÞÞ (with the time derivative of u in an appropriate space [36]) so that ujt¼0 ¼ u0, ujCf
¼ d and for all

ðv; qÞ 2 H1
0ðXcf Þ � L2R

¼0ðXÞ and for almost every t 2 ð0;þ1Þ,h i8
 R
Xcf
ð@tuþ u � ruþrpÞ � v þ R�1

e ru : rv ¼
R

Xcf
ððr �HcÞ � lHcÞ � v;R

Xcf
qr � u ¼ 0:

<: ð2:16Þ
We have defined ru : rv ¼
P

ij@ iuj@iv j. Existence of weak solutions to this problem when Hc is prescribed and sufficiently
smooth is known, see e.g. [36].

The weak formulation of (2.10) that we want to use has been derived in [21]. We introduce the following spaces:
L ¼ ðb;uÞ 2 L2ðXcÞ � H1R
¼0ðXvÞ

� �
; ð2:17Þ

X ¼ ðb;uÞ 2 HcurlðXcÞ � H1R
¼0ðXvÞ; ðb� nc þru� nvÞjR ¼ 0

� �
ð2:18Þ
and we equip L and X with the norm of L2ðXcÞ � H1ðXvÞ and HcurlðXcÞ � H1ðXvÞ, respectively. H1R
¼0ðXv Þ is the subspace of

H1ðXv Þ composed of the functions of zero mean value. The space HcurlðXcÞ is composed of the vector-valued functions on
Xc that are componentwise L2-integrable and whose curl is also componentwise L2-integrable. The space HdivðXÞ is com-
posed of the vector-valued functions on X that are componentwise L2-integrable and whose divergence is L2-integrable.

We are now in position to formulate the problem as follows: Seek the pair ðHc;/Þ 2 L2ðð0;þ1Þ; XÞ \ L1ðð0;þ1Þ; LÞ (with
@tH

c and @t/ in appropriate spaces) such that for all ðb;uÞ 2 X and for almost every t 2 ð0;þ1Þ,
Hcjt¼0 ¼ Hc
0; r/jt¼0 ¼ r/0;R

Xc
lcð@tH

cÞ � bþ ððRmrÞ�1ðr �Hc � jsÞ � ~u� lcHcÞ � r � b
h i

þ
R

Xv
lvð@tr/Þ � ru

þ
R

RððRmrÞ�1ðr �Hc � jsÞ � ~u� lcHcÞ � ðb� nc þru� nvÞ
¼
R

Cc
ða� nÞ � ðb� nÞ þ

R
Cv
ða� nÞ � ðru� nÞ:

8>>>>><>>>>>:
ð2:19Þ
The interface integral over R is zero since b� nc þru� nv ¼ 0, but we nevertheless retain it since it does not vanish when
we construct the non-conforming finite element approximation in Section 3.

Note that since the data a is tangent on C by definition, i.e., a ¼ n� ða� nÞ, we have a � b ¼ ða� nÞ � ðb� nÞ for every vec-
tor field b.

It has been shown in [21] that (2.19) is equivalent to (2.12). Observe that the boundary conditions on Cv and Cc in (2.12) are
enforced naturally in (2.19). The control of the boundary conditions on Cv is done by means of the boundary integralR

Cv
ða� nÞ � ðru� nÞ. Alternatively, a Dirichlet boundary condition on the magnetic field can be enforced, say

r/� njCv
¼ a, by prescribing / on Cv and requiring the test functions u to be zero on Cv . Note that the boundary condition

r/� njCv
¼ a only involves the tangent component of the gradient and this component only depends on the value of / on Cv .

The interface continuity condition Hc � nc þr/� nv ¼ 0 is an essential condition, i.e., it is enforced in the space X, see
(2.18). One originality of the approximation technique introduced in [21] and recalled in Section 3 is to make this condition
natural by using an interior penalty technique.

At this point it may not seem clear to the reader that the weak formulation (2.19) enforces the interface condition
lcHc � nc þ lvr/ � nv ¼ 0 naturally. To see this, let us define Ec :¼ ðRmrÞ�1ðr �Hc � jsÞ � ~u� lcHc; clearly
r� Ec ¼ �lc@tH

c . Let ðb;uÞ be a smooth test function in X so that b is zero in a neighborhood of Cc and u is zero in a neigh-
borhood of Cv . Let ~u be the harmonic extension of u on X defined as follows: ~u ¼ u in Xv , D ~u ¼ 0 in Xc , ~ujR ¼ ujR, ~ujCc

¼ 0.
After integration by parts and using b� ncj@Xc

¼ r~u� ncj@Xc
, (2.19) implies
0 ¼ �
Z

R
Ec � ðr~u� ncÞ þ

Z
R
lv@tðr/Þ � nv ~u ¼

Z
Xc

r� ðr~uÞ � Ec �
Z

Xc

r ~u � ðr � EcÞ þ
Z

R
lv@tðr/Þ � nv ~u

¼
Z

Xc

�r � ð~ur� EcÞ þ
Z

R
lv@tðr/Þ � nv ~u ¼

Z
R
ð�ðr � EcÞ � nc þ lv@tðr/Þ � nvÞ ~u ¼ dt

Z
R
ðlcHc � nc þ lvr/ � nvÞ ~u:
Since ~u can be chosen so that ~ujR is arbitrarily close to any function in L1ðRÞ, this means that ðlcHc � nc þ lvr/ � nv Þ does not
depend on time and space. But the compatibility condition r � ðlH0Þ ¼ 0 implies ðlcHc � nc þ lvr/ � nv Þjt¼0 ¼ 0, meaning
that lcHc � nc þ lvr/ � nv is zero and this condition is enforced naturally for all times.

The problem to be solved is the coupled system (2.16)–(2.19). Well-posedness of (2.19) when ~u is a prescribed smooth func-
tion is evident (see e.g. [2,8, 21, Thm 2.1]). Existence of weak solutions of (2.16)–(2.19) is known when X ¼ Xc , i.e., Xv ¼ ;, see
e.g. [18, Section 2.2, 32, Theorem 3.1] and uniqueness can be proved assuming smoothness. Existence of a weak solution for the
fully coupled nonlinear system is not so clear when Xv–;; we will nevertheless assume it in the rest of the paper.
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3. Finite element approximation

We give technical implementation details in this section regarding space and time approximation of (2.16)–(2.19). We
use finite elements in the meridian section and Fourier expansions in the aximuthal direction.

3.1. The geometry

We denote by X2D
v , X2D

c and X2D
cf the meridian sections of Xv , Xc and Xcf , respectively. We assume that X2D

v , X2D
c and X2D

cf

have piecewise quadratic boundaries. These sections are meshed using quadratic triangular meshes. We denote by fF v
hgh>0,

fF cs
h gh>0 and fF cf

h gh>0 the corresponding regular families of non-overlapping quadratic triangular meshes. We assume for the
sake of simplicity that for every given mesh index h, F cf

h is a subset of F c
h. For every element K in the mesh F v

h [ F c
h we denote

by TK : bK ! K the quadratic transformation that maps the reference triangle bK :¼ fðr̂; ẑÞ 2 R2; 0 6 r̂; 0 6 ẑ; r̂ þ ẑ 6 1g to K.
We denote by R2D

h the collection of triangle edges that compose the meridian section of R. The collection of cylindrical
surfaces generated by rotation around the symmetry axis by the edges in R2D

h is denoted by Rh. For every cylindrical surface
F in Rh, we denote by hF the diameter of the triangle edge that generates F.

3.2. The Fourier representation

Let ðr; h; zÞ be the polar coordinates and t be the time. The generic form of approximate functions is
f ðr; h; z; tÞ ¼
XM

k¼�M

f k
h ðr; z; tÞeikh; i2 ¼ �1; f k

h ðr; z; tÞ ¼ f�k
h ðr; z; tÞ 8k 2 0;M; ð3:1Þ
where M þ 1 is the maximum number of complex Fourier modes. The coefficients f k
h ðr; z; tÞ take values in finite element

spaces defined further below.
Nothing special is enforced on the axis, i.e., at r ¼ 0. Proper behaviors of approximate functions in the neighborhood of the

axis are guaranteed by integration by parts and the use of the measure r dr dzdh. This measure ensures that we work in the
appropriate weighted Sobolev spaces; we refer to [6] for further mathematical details on weighted spaces.

3.3. Space discretization for Navier–Stokes equations

For the fluid problem we use the mixed Taylor–Hood, P2/P1, finite element (see e.g. [10,16,19] for details on this element).
We define the finite-dimensional complex-valued vector spaces
V2D
h :¼ vh 2 C0ðXcf Þ; vðT�1

K ÞjK 2 P6
2 8K 2 F cf

h

n o
; ð3:2Þ

M2D
h :¼ qh 2 C0ðXcf Þ; qðT�1

K ÞjK 2 P2
1 8K 2 F cf

h

n o
: ð3:3Þ
Then, the velocity and the pressure fields are approximated in the following spaces:
Vh :¼ v ¼
XM

k¼�M

vk
hðr; zÞeikh; vk

h 2 V2D
h ;�M 6 k 6 M

( )
; ð3:4Þ

Mh :¼ qh ¼
XM

k¼�M

qk
hðr; zÞeikh; qk

h 2 M2D
h ;�M 6 k 6 M

( )
: ð3:5Þ
We also use the notation Vh;0 to denote the subspace of Vh composed of the vector fields that are zero on Cf .

3.4. Space discretization for the Maxwell equations

The electromagnetic part of the problem is approximated by using the technique introduced in [21]. The main feature is
that the method is non-conforming, i.e., the continuity constraint ðb� nc þru� nv ÞjR ¼ 0 in X (see (2.18)) is relaxed and
enforced by means of an interior penalty method.

Let ‘H and ‘/ be two integers in f1;2g with ‘/ P ‘H. We first define the meridian finite element spaces
XH;2D
h :¼ bh 2 C0ðXcÞ; bhðTKÞjK 2 P6

‘H
; 8K 2 F c

h

n o
; ð3:6Þ

X/;2D
h :¼ uh 2 C0ðXvÞ;uhðTKÞjK 2 P2

‘/
; 8K 2 F v

h

n o
: ð3:7Þ
Then the magnetic field and the scalar potential are approximated in the following spaces:
XH
h :¼ b ¼

XM

k¼�M

bk
hðr; zÞeikh; bk

h 2 XH;2D
h ; �M 6 k 6 M

( )
; ð3:8Þ
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X/
h :¼ u ¼

XM

k¼�M

uk
hðr; zÞeikh; uk

h 2 X/;2D
h ; �M 6 k 6 M

( )
: ð3:9Þ
3.5. Time discretization

We use the second-order Backward Difference Formula (BDF2) to approximate the time derivatives. The nonlinear terms
are made explicit and approximated using second-order extrapolation in time; this decouples the Navier–Stokes and the
Maxwell part of the problem. Let Dt be the time step and set tn :¼ nDt, n P 0.

The velocity and pressure in the Navier–Stokes problem are decoupled by using the rotational pressure-correction
method [37,23]. The nonlinear term is written in the form ðr � uÞ � uþ 1

2ru2 and the term 1
2ru2 is combined with the

pressure so that we work with the dynamical pressure p ¼ pþ 1
2 u2. The full algorithm is written as follows: After appropriate

initialization at t0 and t1, for n P 1 set
u� ¼ 2un � un�1; H� ¼ 2Hc;n �Hc;n�1: ð3:10Þ
Then solve for unþ1 2 Vh so that unþ1jCf
¼ dnþ1

h , where dnþ1
h is an approximation of the data dðtnþ1Þ and the following holds for

all v 2 Vh;0:
Z
Xcf

Dunþ1

Dt
� v þ R�1

e runþ1 : rv ¼ �
Z

Xcf

v � r pn þ 4
3

wn � 1
3

wn�1
� �

þ
Z

Xcf

v � ððr �H�Þ � lH� � ðr � u�Þ � u�Þ;

ð3:11Þ
where we have set Dunþ1 :¼ 1
2 ð3unþ1 � 4un þ un�1Þ. A pressure correction is computed by solving for wnþ1 and dnþ1 in Mh so

that the following holds for all q 2 Mh:
Z
Xcf

rwnþ1 � rq ¼ 3
2Dt

Z
Xcf

unþ1 � rq; ð3:12ÞZ
Xcf

qdnþ1 ¼
Z

Xcf

qr � unþ1: ð3:13Þ
The pressure is corrected by setting
pnþ1 ¼ pn þ wnþ1 � R�1
e dnþ1: ð3:14Þ
The above algorithm is exactly the rotational pressure-correction algorithm described in [37] and analyzed in [23]. It may
seem unconventional to some readers since the so-called projected velocity has been eliminated as advocated in [20,22].

Once unþ1 is computed we denote by ~unþ1 the extension of unþ1 to the entire conducting region. Recall that the extension
is nonzero if the user wants to model rotating solid parts and zero otherwise. The solution to the Maxwell part of the prob-
lem is computed in one step by solving for Hc;nþ1 in XH

h and /nþ1 in X/
h so that the following holds for all b in XH

h and all u in
X/

h :
 Z
Xc

lc DHc;nþ1

Dt
� bþ ðRmrÞ�1r�Hc;nþ1 � r � b

" #
þ
Z

Xc

lv D/nþ1

Dt
� ruþ

Z
R
ððRmrÞ�1ðr �Hc;nþ1 � jsÞ � ~unþ1 � lcH�Þ

� ðb� nc þru� nvÞ þ gððHc;nþ1;/nþ1Þ; ðb;uÞÞ þ sðHc;nþ1;bÞ

¼
Z

Xc

ð~unþ1 � lcH� þ ðRmrÞ�1jsÞ � r � bþ
Z

Cc

ða� nÞ � ðb� nÞ þ
Z

Cv

ða� nÞ � ðru� nÞ; ð3:15Þ
where we have set DHc;nþ1 :¼ 1
2 ð3Hc;nþ1 � 4Hc;n þHc;n�1Þ, D/nþ1 :¼ 1

2 ð3/nþ1 � 4/n þ /n�1Þ and
gððHc;nþ1;/nþ1Þ; ðb;uÞÞ :¼ b
X
F2Rh

h�1
F

Z
F
ðHc;nþ1 � nc þr/nþ1 � nvÞ � ðb� nc þru� nvÞ; ð3:16Þ

sðHc;nþ1;bÞ :¼ c
Z

Xc

r � ðlcHc;nþ1Þr � ðlcbÞ: ð3:17Þ
The purpose of the bilinear form g is to penalize the quantity Hc;nþ1 � nc þr/nþ1 � nv across R so that it goes to zero when
the mesh-size goes to zero. The coefficient b is user-dependent. We usually take b ¼ 1. The reader is referred to [21] for thor-
ough details and a convergence proof.

The purpose of the bilinear form s is to have a control on the divergence of lcHc , although this control is not really nec-
essary. Adding the bilinear form s amounts to replacing the Faraday equation by the following equivalent PDE’s:
lc@tH
c ¼ �r� Ec þ lcrðcr � ðlcHcÞÞ; ð3:18Þ

r � ðlcHcÞj@Xc
¼ 0: ð3:19Þ
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Depending of the regularity of R we either take c ¼ 1 or c ¼ 0. We set c ¼ 1 when R is smooth or piecewise smooth and has
no re-entrant corner, otherwise we set c ¼ 0. It is known that when using Lagrange elements and when R has re-entrant
corners using the stabilizing bilinear form s leads to convergence loss, i.e., it may happen that a singular component of
the solution is not computed if the interface is not smooth (see Costabel’s Lemma [13]). Based on ideas from [9], we are cur-
rently developing a stabilization technique that avoids this possible inconvenience.

Due to the fact that the nonlinear terms are made explicit using the so-called Adams–Bashforth extrapolation (3.10), the
above scheme is stable under a CFL condition. In practice the CFL number is of order one or smaller. Measured in the L2-norm,
the scheme is formally second-order in time for all variables, third-order in space for the velocity, second-order in space for
the pressure, second and a half-order in space for the magnetic and potential fields.

3.6. Linear systems

It is clear that at each time step the algorithm (3.10)–(3.17) leads to as many independent linear systems as Fourier
modes. For instance, let np and nu be the number of P1 and P2 nodes in the two-dimensional mesh F cf

h , i.e.,
dimðM2D

h Þ ¼ 2np and dimðV2D
h Þ ¼ 6nu. Then, for each Fourier mode (3.11) gives two linear systems of size 2nu (the r- and

h-components of the velocity field are coupled) and two linear systems of size nu (the z-component of the velocity field is
uncoupled). Problems (3.12) and (3.13) each give two systems of size np. Let nH be the number of P1 nodes in the two-dimen-
sional mesh F c

h if ‘H ¼ 1 or number of P2 nodes if ‘H ¼ 2 and let n/ be the number of P1 nodes in the mesh F v
h if ‘/ ¼ 1 or P2

nodes if ‘/ ¼ 2. For each Fourier mode, (3.15) gives two linear systems of size 3nH þ n/; see Table 1.
The linear systems are solved using a preconditioned biCG-stab algorithm, the preconditioner being the incomplete LU

factorization with thresholding (ILUT). The maximum of nonzero entries for each line in each ILUT factorization is set to
70. The band-width of each preconditioner is minimized by re-ordering the degrees of freedom using a Cuthill/McKee-like
method (see e.g. [30,16]). The linear systems are considered to be solved when the residual is reduced by a 10�6 ratio. Two to
twenty biCG-stab iterations are needed depending on the problem to be solved. We observed that the complexity of our pre-
conditioned biCG-stab algorithm is OðN1:25Þ for a Laplace-like equation, where N is the number of degrees of freedom.

If there were no nonlinear terms, the above linear systems associated with each Fourier mode could be solved in parallel.
In principle we could use as many processors as Fourier modes. Of course, this picture is idealistic since all the modes are
coupled through the nonlinear terms. Nevertheless, this is the model we have chosen to parallelize the code. Given a number
of Fourier modes, say M þ 1, we perform the computation on Nproc processors so that Nproc divides M þ 1. Then, the modes are
divided into blocs of size Nb :¼ ðM þ 1Þ=Nproc and each bloc of Fourier modes is assigned to one processor. If M þ 1 processors
are available, one simple choice is to take Nproc ¼ M þ 1.

3.7. Computation of nonlinear terms

The nonlinear terms are computed using a pseudo-spectral method without de-aliasing and the fast Fourier transform
subroutines from the FFTW3 package [17]. In the rest of this section we describe how we have implemented FFTW3 so as
to reduce communication times. All the nonlinear terms are of the form A� B and must be computed either at the Gauss
points or at the nodes of the mesh of the meridian section (using Gauss points is more accurate but slightly more expensive
since there are more Gauss points than nodes). In practice, the vectors A and B are the three-dimensional vector fields u, H,
r� u, or r�H.

Let ng be the number of nodes or Gauss points in the meridian plane where the cross products have to be evaluated; these
points are labeled 1; . . . ;ng . Denote by bA and bB the collection of the associated Fourier modes at the ng points. The Fourier
nodes are labeled 0; . . . ;M. If needed, artificial data are added to bA and bB so that ng is a multiple of Nproc. Assume that the
collection of Fourier modes bA has been distributed so that processor Pi, 0 6 i 6 Nproc � 1, takes care of the modes of indices
iNb; . . . ; ðiþ 1ÞNb � 1 of the ng points. We denote by bAi the bloc of data assigned to processor Pi; these are 3� Nb � ng com-
plex numbers. We further divide bAi into Nproc blocs so that bloc j, 0 6 j 6 Nproc � 1, contains the Fourier coefficients of the
points of indices jng=Nproc þ 1; . . . ; ðjþ 1Þng=Nproc; the bloc in question is denoted by bAi;j. As a result bloc bAi;j contains
3� ððM þ 1Þ=NprocÞ � ðng=NprocÞ complex numbers. Using the MPI protocol, the bloc matrices ðbAi;jÞ and ðbBi;jÞ,
0 6 i; j 6 Nproc � 1 are transposed by one call to the MPI_ALLTOALL subroutine. After this call the processor Pi has access
to the blocs bA0;i; . . . ; bANproc�1;i, i.e., these are all the Fourier modes of the points of indices ing=Nproc þ 1; . . . ; ðiþ 1Þng=Nproc.
The real values associated with these Fourier modes are evaluated at the angles 0; . . . ; 2kp

2Mþ1 ; . . . ; 2Mp
2Mþ1, using the complex to
Table 1
Summary of linear operations.

Eq. Fields Size of lin. syst. # of lin. syst.

(3.11) ur , uh 2 nu 2
(3.11) uz nu 2
(3.12) p :¼ pþ 1

2 u2 np 2
(3.13) d np 2
(3.15) H, / 3nH þ n/ 2



Fig. 2. Use of MPI_ALLTOALL and FFTW3.
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real FFTW3 subroutine; the cross products are then evaluated and stored in blocs C0;i; . . . ;CNproc�1;i. The corresponding Fourier
coefficients are then computed by using the real to complex FFTW3 subroutine and stored in the bloc structurebC0;i; . . . ; bCNproc�1;i. The Fourier modes are finally redistributed among the processors, i.e., the bloc matrix is transposed by call-
ing again the MPI_ALLTOALL subroutine. The entire procedure is schematically described in Fig. 2.

Communications are restricted to the two calls to the MPI_ALLTOALL subroutine. At each communication cycle each pro-
cessor sends and receives 3� Nb � ng � ðNproc � 1Þ=Nproc complex numbers. The main feature of this protocol is that the num-
ber of data exchanged on each processor is of the same order as the number of points in the meridian plane, ng .

3.8. Parallelization tests

We have made two series of tests to assess the parallelization performance of the code. In the first series we have tested
the subroutine performing the pseudo-spectral evaluation of cross products and in a second test we have evaluated the Na-
vier–Stokes part of the code. The first test assesses the impact of communication whereas the second assesses the load bal-
ancing. The tests have been performed on an IBM SP4 cluster of processors of IDRIS.

Since computing the cross products is the only part in the code that requires communication, we have spent some time
trying to optimize it. We report in Tables 2 and 3 the results of two tests done with two different sets of parameters M and ng .
Efficiency coefficients larger than one are probably due to memory cache effects. As the number of processors increases, each
processor treats smaller sets of data which better fit in the fast internal memory. Recalling that ð2M þ 1Þ � ng represents the
number of nodes in the corresponding three-dimensional mesh, these two tests approximately correspond to 6� 106 grid
points. Despite the relatively large amount of inter-processor communication involved in the algorithm (see Fig. 2) we ob-
serve extremely good scaling with the number of processors in the two test cases. This is due to the fact that the IBM SP4
architecture has very fast connections between nodes. These somewhat surprising observations are similar to those made in
[7, Section 2.6].

In the second test we have solved the Navier–Stokes equations using M þ 1 ¼ 16 complex Fourier modes in a cylinder
whose meridian rectangular section is discretized using 46,985 P2 nodes. The three-dimensional mesh is then composed
of approximately 1:5� 106 velocity degrees of freedoms. At low Reynolds numbers, i.e., when the nonlinear terms are not
really active, the parallel efficiency goes down to less than 50%. This is due to the fact that the processors in charge of the
higher Fourier modes have a smaller load; they still participate to the computation of the cross products through the FFTs,
but the time spent for solving the linear systems is negligible since, the Fourier coefficients being close to zero, it is easy to
Table 2
FFT test using M þ 1 ¼ 64, ng ¼ 50; 000.

# processors 1 2 4 8 16 32 64

Speed up 1.000 2.092 4.016 9.648 18.72 32.94 54.50
Efficiency 1.000 1.046 1.004 1.206 1.170 1.029 0.852

Table 3
FFT test using M þ 1 ¼ 30, ng ¼ 100;000.

# processors 1 2 6 10 15 30

Speed up 1.000 2.098 5.347 11.48 17.62 32.53
Efficiency 1.000 1.049 0.891 1.148 1.175 1.084



Table 4
Navier–Stokes test, M þ 1 ¼ 16, ng ¼ 46;985.

# processors 1 2 4 8 16

Speed up 1.000 1.549 4.032 5.751 14.45
Efficiency 1.000 0.775 1.008 0.719 0.903
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make a very accurate initial guess of the solution. When the Reynolds number is large enough so that all the Fourier modes
are populated, we recover parallel efficiency coefficients close to one. Table 4 shows the results of one typical test.

This test shows that load balancing issues may occur when the Fourier modes are equally distributed among the proces-
sors and some of these modes are inactive or have low activity. There is no issue though when all the Fourier modes are
active.

4. Periodic and finite Taylor–Couette dynamos

The Taylor–Couette flow is one of the most intensively studied flows using either analytical, experimental, or numerical
tools (see [34] and references therein). The MHD version of this problem is largely unexplored due to the difficulty of dealing
with magnetic boundary conditions in bounded domains. The purpose of this section is twofold. First we validate our code by
making comparisons with published results on z-periodic solutions [38] proving that the Taylor–Couette flow of conducting
fluid can sustain dynamo action. Second, we consider a finite setting, i.e., non-periodic in the axial direction and we uncover
a new type of cyclic nonlinear dynamo. Comparisons between the periodic and finite cases are discussed. In this entire sec-
tion l is constant and lc ¼ lv .

4.1. The physical setting

We consider an incompressible fluid, of kinematic viscosity m, contained between two coaxial cylinders of height or axial
period Lz. The radius of the inner cylinder is Ri and that of the outer one is Ro. The inner cylinder rotates with angular velocity
Xi and the outer one is static. The magnetic permeability is assumed to be constant, say l0. The conductivity is also assumed
to be constant, say r0.

We use L ¼ Ro � Ri as unit length, U ¼ XiRi as unit velocity and H ¼ U
ffiffiffiffiffiffiffiffiffiffiffi
q=l0

p
as unit magnetic field. The governing non-

dimensional parameters of the system are the kinetic Reynolds number, Re, the magnetic Reynolds number, Rm, the radius
ratio g and the aspect ratio C,
Table 5
Charact
npðHÞ i

Bounda

Finite
z-Perio
Re ¼
UL
m
; Rm ¼ l0r0UL; g ¼ Ri

Ro
; C ¼ Lz

L : ð4:1Þ
Whenever the context makes confusion impossible, we abuse the notation by using the same letters for dimensional and
non-dimensional quantities. In the following, we set g ¼ 0:5. This immediately implies, Ri ¼ 1, Ro ¼ 2, Xi ¼ 1. Therefore,
the conducting domain Xc containing the fluid is defined in cylindrical coordinates by r 2 ½1;2�, h 2 ½0;2p� and
z 2 ½�C=2;C=2�. Two situations are considered and compared. In the first case we assume that the problem is periodic in
the z-direction and we set C ¼ 4. In the second case we assume that the vertical extension of the cylinders is finite and
we set C ¼ 2p. In both cases the two cylinders are surrounded by vacuum and the vacuum domain is truncated for numerical
purposes. In the first case (i.e., periodicity in z-direction), the vacuum region of height C extends from r ¼ 0 to r ¼ 1 and from
r ¼ 2 to r ¼ 10. In the second case (i.e., finite vertical extension) the vacuum region is bounded by a sphere of radius Rs ¼ 10.
We have verified that truncating the vacuum domain to a sphere or cylinder with a radius 10 times larger than the reference
length scale is sufficient to guarantee less than one per cent accuracy due to truncation.

4.2. Numerical details

The velocity and magnetic fields in Xc are approximated using P2 Lagrange polynomials and the pressure field is approx-
imated using P1 polynomials. In the vacuum Xv , the magnetic potential / is approximated using P2 Lagrange polynomials.
Typical characteristics of all the cases studied in Sections 4.3–4.5 are summarized in Table 5.
eristics of the runs: h is the uniform or non-uniform mesh-size in Xc; Dt is the timestep; npðPÞ is the number of P1 nodes for the pressure field in Xc;
s the number of P2 nodes for the magnetic and velocity fields in Xc; npð/Þ is the number of P2 nodes for the magnetic potential in Xv .

ry cond. h Dt npðPÞ npðHÞ npð/Þ

1/80 0.025 11,893 46,985 31,870
dic 1/100–1/25 0.025 3603 14,113 16,424
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We have done all the computations on four different meshes, h ¼ 1=20, h ¼ 1=40, h ¼ 1=80, h ¼ 1=100. We have verified
that all the results are comparable within a 3% range when h 6 1=40. The computations reported below are done using
h ¼ 1=80. In all the computations reported below, the relative L2-norm of the divergence of the velocity and the magnetic
induction are of order 2:4� 10�2 and 4:0� 10�4, respectively.

Illustrations of the finite element meshes of the conducting and non-conducting regions are shown in Fig. 3; the mesh-
sizes have been coarsened for visualization purposes.

The computations have been performed on the IBM SP4 machine of IDRIS. The Navier–Stokes computations reported in
Section 4.3 require 10�5 CPU seconds per degree of freedom and per time step. The Maxwell computations reported in Sec-
tion 4.4 require 2:6� 10�5 CPU seconds per degree of freedom and per time step per processor. The nonlinear MHD compu-
tations reported in Section 4.5 require 3:8� 10�5 CPU seconds per degree of freedom and per time step per processor.

4.3. First hydrodynamic bifurcation

In this section, the Navier–Stokes equations are solved in the absence of magnetic field. At low Reynolds numbers the
fluid flow is axisymmetric and is purely azimuthal in the periodic case (i.e., the Couette flow). As Re increases and goes be-
yond a critical value Rec, the flow becomes centrifugally unstable to axisymmetric rolls (Taylor vortices) which break the
translational symmetry along the axis of the cylinders. The purpose of this section is to describe this bifurcation as a vali-
dation of the Navier–Stokes code.

4.3.1. z-Periodic case
Taylor [35] computed the threshold of the first hydrodynamic bifurcation by neglecting the effects of the top and bottom

plates of the experiment and therefore assuming that the vortices are periodic along the axis. With g ¼ 0:5, the critical Rey-
nolds number of the first bifurcation is RCh

ec ¼ 68:23 for the aspect ratio CCh ¼ 1:96 [11] corresponding to a pair of counter-
rotating rolls of approximately unit aspect ratio in ðr; zÞ. In our computation, we set C ¼ 4, like in [38], so as to have room for
two pairs of Taylor vortices and one magnetic structure (see below). The computation is done using the m ¼ 0 azimuthal
Fourier mode only. We assume periodic boundary conditions for u at z ¼ 	C=2. The other boundary conditions are
uðr ¼ 1; zÞ ¼ eh; uðr ¼ 2; zÞ ¼ 0: ð4:2Þ
The bifurcation connecting the circular Couette basic state [35] to the Taylor vortices is of supercritical pitchfork type. The
strength of the transition between the two states, measured by the strength of the rolls (for example the radial velocity
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Fig. 3. Illustrations of the finite element meshes of the conducting (a) and non-conducting (b) regions.
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component at z ¼ 0; r ¼ 1:7 in Fig. 4(a), varies as the square root of Re � Rec. Our computations give Rperio
ec 
 68, which is close

to the quoted value RCh
ec ¼ 68:23. The velocity field is shown in Fig. 5(a) and (b) for a subcritical (Couette flow) and a super-

critical Reynolds number (Taylor vortex flow). The nonlinear Taylor vortex flow thus obtained, hereafter denoted by Vperio
VF , is

used for kinematic dynamo computations which are reported in Section 4.4. With the above parameter values, the second
transition to wavy vortices occurs at a larger Reynolds number, Re > 272 [24].

4.3.2. Finite case
We now assume no-slip boundary conditions for u at z ¼ 	C=2. The top and bottom plates break the translational sym-

metry along the cylinder axis. Experimentalists have studied settings with large values of C in order to mimic the periodic
case [35,3]. Experiments conducted with small values for C, say C 
 Oð1Þ, have detected anomalous bifurcation branches
[5,12]. The small aspect ratio region has also been investigated with the help of numerical simulations [27,26] and is known
to exhibit complicated dynamics where the rotation symmetry about the cylinder axis and the equatorial symmetry about
the z ¼ 0 plane play crucial roles. Since we do not want to mix the dynamo and the hydrodynamic symmetry features, we
choose an intermediate value of the cylinder aspect ratio, C ¼ 2p. Again, the computations are done using the m ¼ 0 azi-
muthal Fourier mode only. The boundary conditions are now as follows:
uðr ¼ 1; zÞ ¼ eh; uðr ¼ 2; zÞ ¼ 0; uðr; z ¼ 	pÞ ¼ 0: ð4:3Þ
Bödewadt boundary layers at the top and bottom static plates cause the fluid to spiral inwards for any Re. Taylor vortices of
small amplitude develop in the boundary layers (see Fig. 5(c)) and invade the bulk of the system as Re approaches Rec (see
Fig. 5(d)) [1,29].

Benjamin [3,4] interpreted the formation of Taylor vortices in a finite experiment as an imperfect pitchfork bifurcation
(see Fig. 4(b)). We compute the bifurcation threshold by linearly interpolating the square of the L2-norm of the radial veloc-
ity, the L2-norm being computed in a small region around the equatorial plane. We obtain Rfinite

ec 
 65, to be compared to
Rperio

ec 
 68. For Re ¼ 120, Fig. 5(d) shows three pairs of steady counter-rotating meridional vortices of almost square shape.
Three wavelengths fit in the domain. This flow has the following symmetry properties with respect to the equatorial plane
z ¼ 0: ðUr ;Uh;UzÞðr; h;�zÞ ¼ ðUr ;Uh;�UzÞðr; h; zÞ that we refer to as the symmetric state. The nonlinear Taylor vortex flow
thus obtained is henceforth denoted by Vfinite

VF and is used for kinematic dynamo computations which are reported in the next
section.

Since the ratio of poloidal (meridional) to toroidal (azimuthal) velocity is an important flow parameter for kinematic dy-
namo computations we report in Table 6 the maximum of the various components at Re ¼ 120 for Vperio

VF and Vfinite
VF . It is

known that in the periodical case the poloidal to toroidal ratio 
 0:15 yields dynamo action, see [38]. From Table 6, we ob-
serve that this ratio is again 
 0:15 in the finite case, we then expect to obtain the dynamo action in the finite setting also
(this is confirmed in Sections 4.4 and 4.5.2).

4.4. Kinematic dynamo

We use the nonlinear Taylor vortex flow Vperio
VF or Vfinite

VF obtained at Re ¼ 120 to solve the induction equation (kinematic
regime). Since both flows are axisymmetric, the term r� ðVVF �HcÞ cannot transfer energy between the azimuthal modes
of Hc , i.e., the azimuthal modes are uncoupled. The first bifurcation is of Hopf type and the unstable eigenvector corre-
sponds to the Fourier mode m ¼ 1 [25,38]; consequently, we set the initial small magnetic seed field in the conductor
to be



Fig. 5. Taylor–Couette flow with C ¼ 4 (Vperio
VF , a–b) and C ¼ 2p (Vfinite

VF , c–d) at Re ¼ 50 (left) and Re ¼ 120 (right). Represented are the meridional velocity
field streamlines and the azimuthal component.

Table 6
Maxima

Re ¼ 12

max ur

max uh

max uz
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Hr ¼ 1
r f ðrÞ cosðhÞ sinðk0zÞ;

Hh ¼ �f 0ðrÞ sinðhÞ sinðk0zÞ;
Hz ¼ 0

8><>: ð4:4Þ
with k0 ¼ n02p=C, n0 2 N being a parameter and f ðrÞ ¼ AðRi � rÞ2ðRo � rÞ2: This magnetic field is compatible with /0 ¼ 0 in
the vacuum.

The magnetic energy of the m ¼ 1 mode, 1
2

R
X2D

c
kHcðm ¼ 1Þk2dx, is recorded as a function of time for various magnetic

Reynolds numbers Rm 2 ½150;480�; the notation Hcðm ¼ 1Þ refers to the Fourier mode m ¼ 1 of Hc . The growth rate of the
of Vperio
VF and Vfinite

VF at Re ¼ 120.

0 Perio C ¼ 4 Finite C ¼ 2p

0.1935 0.1967
1 1
0.1454 0.1564
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magnetic field (i.e., the real part of the leading eigenvalue) is reported in Fig. 6(a) for the two configurations considered (fi-
nite and periodic domains). We have verified that different initial conditions with wavenumbers n0 ¼ 1 or n0 ¼ 2 lead to the
same asymptotic time evolution. The two critical magnetic Reynolds numbers, defined so that the growth rate of the mag-
netic field is zero, are Rperio

mc ¼ 170	 1 and Rfinite
mc ¼ 187	 1 at Re ¼ 120. The difference between these two thresholds can be

explained by the differences in the topology of the velocity fields. The top and bottom vortices induced by the Bödewadt
boundary layers in the finite case are impediments to the growth of the magnetic field and, as a result, delay the bifurcation.

When Rm is larger than the critical value, recordings of the time evolution of the magnetic field at various points in the
fluid domain show that the signal is the product of a growing exponential and a time-periodic component. We observe that
the period of the oscillating component is T finite 
 252 and Tperio 
 242 for Re ¼ 120 and Rm ¼ 240 (see Fig. 6(b)). The dom-
inant component of the magnetic field is the azimuthal one, the radial and vertical components being smaller and of the
same order.
Fig. 7. Kinematic dynamo. Magnetic eigenvector (Hr ;Hh ;Hz) at Re ¼ 120 and Rm ¼ 240. Represented are the radial (16 levels between �0:4 6 Hr 6 0:4),
azimuthal (10 levels between �1 6 Hh 6 1) and vertical (6 levels between �0:15 6 Hz 6 0:15) components normalized by the maximum of the azimuthal
component.
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Iso-lines of the three components of magnetic eigenvectors are shown in Fig. 7 at planes h ¼ 0 and h ¼ p=2 for the peri-
odic and finite cases. Iso-surfaces of the modulus of the magnetic eigenvectors are shown in Fig. 8. In both cases, the eigen-
function has a m ¼ 1 symmetry. Note that, as expected [25], the magnetic wavelength is about twice that of the velocity in
both cases; there is no scale separation in this kinematic dynamo. Both magnetic eigenvectors show similar features. In the
finite case, this magnetic structure has the following symmetry properties with respect to the equatorial plane z ¼ 0:
ðHr ;Hh;HzÞðr; h;�z; tÞ ¼ ð�Hr ;�Hh;HzÞðr; h; z; tÞ that we refer to as the antisymmetric magnetic state (also sometimes named
‘dipole’ solution in the astrophysical literature). The same symmetry properties hold in the periodic case with respect to
planes z ¼ 0:7 and z ¼ �1:3. Note that, at the symmetry planes, z ¼ 0 (finite case) or z ¼ 0:7 and z ¼ �1:3 (periodic case),
Hr ¼ 0 ¼ Hh and Hz–0. The two magnetic blobs constituting the magnetic structure are connected via these nonzero Hz zones
(see Fig. 8(a) and (b)) in both cases. However, in the finite case, due to the value of the finite height, only one magnetic pair
can fit in the domain.

4.5. Nonlinear dynamo

In this section, we perform nonlinear dynamo computations at Re ¼ 120 and Rm ¼ 240. We work with 12 azimuthal
modes (m ¼ 0; . . . ;11) and the meridional finite element mesh is the same as that used in the kinematic runs. The initial
velocity field is the axisymmetric Taylor vortex flow Vperio

VF or Vfinite
VF for Re ¼ 120 and the initial magnetic seed is the growing

mode obtained in the kinematic computations (Section 4.4, Rm ¼ 240).
Fig. 8. Kinematic dynamo. Isosurface of jHj at Re ¼ 120 and Rm ¼ 240 for (a) the periodic case and (b) the finite case (25% of maximum values).

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 0  500  1000  1500  2000

Em
ag

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

 0  500  1000  1500  2000

Ec
in

a b

Fig. 9. Nonlinear dynamo in the z-periodic case. Time evolution of (a) magnetic and (b) kinetic energies in the conducting region Ri 6 r 6 Ro and
�C=2 6 z 6 C=2.
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4.5.1. z-Periodic case
The time evolution of the kinetic and magnetic energies in the periodic configuration is reported in Fig. 9. The kinetic and

magnetic energies are defined as follows, 1
2

R
Xc
kuk2dx, 1

2

R
Xc
kHck2dx, respectively. As in [38], the magnetic energy first in-

creases exponentially and then saturates. Contrary to the kinematic case, the flow is modified by the Lorentz force: the brak-
ing action (Lenz rule) is directly visible on the evolution of the total kinetic energy which experiences a decrease of about
16%. The final nonlinear MHD state is a steady rotating wave and results from the balance between the driving effect of
the viscous shear and the braking effect of the Lorentz force.

In the nonlinear regime, the fluid flow loses the m ¼ 0 symmetry and the magnetic field loses the m ¼ 1 symmetry. The
flow is forced by the Lorentz force ðr �HÞ �H and acquires a m ¼ 2 contribution. The magnetic field is deformed by the
action of the induction term and acquires a m ¼ 3 perturbation. By consequence, the coupling terms generate even azimuthal
velocity modes, m ¼ 0;2; . . . and odd azimuthal magnetic modes, m ¼ 1;3; . . . At saturation the velocity mode m ¼ 0 is dom-
inant. We show in Fig. 10(a) and in the subsequent figures the velocity structure without the m ¼ 0 contribution so as to
better distinguish the fine structures. The modulus of the magnetic field at saturation is shown in Fig. 10(b). The symmetry
properties of the kinematic case are conserved in the nonlinear regime.

4.5.2. Finite case
To our knowledge, the numerical study of this MHD configuration is new. In contrast with the steady dynamo in the z-

periodic case, we obtain a cyclic dynamo regime when the z-extension of the fluid domain is finite.
Fig. 11 shows the time evolution of the kinetic and magnetic energies for the aspect ratio C ¼ 2p. From t ¼ 0 to t ¼ 800

(first phase), the kinetic energy decreases and the magnetic energy grows exponentially with a growth rate similar to that of
the kinematic dynamo. Then, in the nonlinear regime, both the magnetic and the kinetic energies seem to saturate, but at
t ¼ 1200 the magnetic energy starts to decrease and the kinetic energy starts to increase (for 1200 6 t 6 2250). The system
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Fig. 11. Nonlinear dynamo in the finite case. Time evolution of (a) magnetic and (b) kinetic energies in the conducting region Ri 6 r 6 Ro and
�C=2 6 z 6 C=2.

Fig. 10. Periodic nonlinear dynamo at saturation, Re ¼ 120, Rm ¼ 240. Isosurface of (a) jujwithout m ¼ 0 contribution and (b) jHj (25% of maximum values).



J.-L. Guermond et al. / Journal of Computational Physics 228 (2009) 2739–2757 2755
enters a cyclic regime. The magnetic energy reaches a minimum at t 
 2250 followed by a maximum at t 
 2900, a mini-
mum at t 
 3850 and a maximum at t 
 4500. The first arch (for 0 6 t 6 2250) corresponds to a long transitory regime
which is followed by two cycles of about 1600 time units, where magnetic and kinetic energies oscillate in opposition.

The main new feature during the time evolution is the breaking of the equatorial symmetry of the solution. The non-mag-
netic flow at Re ¼ 120 has a planar symmetry both in the z-periodic and finite cases, see Fig. 5 (the azimuthal velocity is even
with respect to z). In the case of the kinematic dynamo (Rm ¼ 240) the magnetic field is antisymmetric with respect to z (di-
pole-like) both in the z-periodic and finite cases, see Fig. 7. We show in Fig. 12 the azimuthal velocity and magnetic fields in
the MHD regime (without the axisymmetric component) at five typical times ta ¼ 800, tb ¼ 1200, tc ¼ 1900, td ¼ 2300,
te ¼ 2500, for the finite case. Table 7 shows how the symmetries of the solution relate to the dynamo properties of the system.

The cyclic behavior of the Taylor–Couette dynamo is related to the breaking of the equatorial symmetry of the flow in-
duced by the growing magnetic field. Fig. 13(a) and (b) shows that the m–0 velocity modes are maximum and not even with
respect to z when the magnetic field is maximum (Fig. 13(c) and (d)). This symmetry breaking leads to the fading of dynamo
action. When the magnetic energy is sufficiently low (Fig. 13(g) and (h)), the m–0 velocity modes are small (Fig. 13(e) and
(f)) and the flow is dominated by the m ¼ 0 Taylor vortex flow with the adequate forcing equatorial symmetry. Dynamo ac-
tion may then begin again.

4.6. Discussion

The dynamo results presented above have been obtained using a limited set of parameters. The large variety of hydrody-
namic flows which may be driven in a finite Taylor–Couette set-up (including unsteady flows) opens the way to a potentially
large number of dynamo studies. Moreover, the dimension of the parameter space can be increased by adding static or mov-
ing conductive solid layers around the outer cylinder, in the inner core, or on the top and bottom lids.

In the finite configuration that we have considered (g ¼ 0:5, C ¼ 2p, Re ¼ 120), the axial scale of the most unstable mag-
netic mode (with azimuthal wavenumber m ¼ 1) is about twice that of the flow. This is in agreement with the periodic case,
Table 7
Symmetries at various times in the finite case.

Times Parity of Hh Parity of uh Dynamo action

ta , tb Odd Even Yes
tc , td Mixed Mixed No
te Odd Even Yes

Fig. 12. Nonlinear dynamo in the finite case. Azimuthal magnetic field at h ¼ 0 and h ¼ p=2 and azimuthal velocity field at h ¼ 0 and h ¼ p=4 without the
m ¼ 0 mode for t 2 f800;1200;1900;2300;2500g (a–e) and (a0–e0). The fields are normalized by the square root of the kinetic energy at t ¼ 2250 and
�2 6 Hh 6 2 (16 levels) and �0:02 6 uh 6 0:02 (16 levels).



Fig. 13. Finite nonlinear dynamo, Re ¼ 120, Rm ¼ 240. Isosurface of (a) jujwithout the m ¼ 0 contribution (25% of maximum value), (b) uh (50% of minimum
value in black and 50% of maximum value in white), (c) jHj (25% of maximum value) and (d) Hh (50% of minimum and maximum values) at t ¼ 2900 near a
magnetic energy maximum. (e–h) Same visualizations at t ¼ 3900 near a magnetic energy minimum.
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which was first examined in [25] in a kinematic regime and extended to the nonlinear dynamo regime in [38]. At low Rey-
nolds numbers, the hydrodynamic flow is composed of cells each containing two toroidal counter-rotating rolls and the mag-
netic pattern extends in the z-direction over two pairs of rolls. The magnetic energy is maximum where the jet between the
counter-rotating vortices is directed inwards. A similar property has been observed for kinematic dynamos in a sphere [15].
The so-called s2t1 flow is composed of two coaxial rolls defining a central hyperbolic point and the dynamo works only when
the meridional flow is directed inwards at the equator and outwards at the poles. The Taylor–Couette flow in a vessel of as-
pect ratio C ¼ 2 and rotating lids attached to the inner cylinder is the candidate for such a s2t1 flow and can possibly generate
dynamo action. We are currently investigating this setting.

5. Conclusion

We have described a technique for solving the MHD equations in axisymmetric domains using an hybrid method com-
bining finite elements in the meridian section and Fourier approximation in the azimuthal direction. The technique can solve
problems involving conducting fluids, moving or steady conducting solids and non-conducting regions. The conductivity
coefficient in the conducting regions can be discontinuous. The permeability coefficients can be discontinuous across the
interface separating the conducting and non-conducting regions but must be smooth in the conducting region. We are cur-
rently working to remove this constraint. A parallelization technique for computing nonlinear terms using FFTW3 has been
described.

The Navier–Stokes solver has been validated by studying Taylor–Couette flows. We have obtained an imperfect pitchfork
bifurcation in a vessel of aspect ratio C ¼ 2p (due to Bödewadt recirculations at the top and bottom static plates).

The Maxwell solver has been validated on various kinematic dynamos. We have obtained a kinematic dynamo in a finite
vessel of aspect ratio C ¼ 2p in which the magnetic field is composed of a unique m ¼ 1 rotating magnetic structure.

The nonlinear MHD code has been validated by studying Taylor–Couette dynamos. The self-consistent saturated dynamo
found in [38,39] has been reproduced in the z-periodic case. The nonlinear dynamo action found in the finite vessel of aspect
ratio C ¼ 2p shows a striking behavior in which the spatial symmetry about the equatorial plane of the velocity and
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magnetic fields play a major role. The dynamo is cyclic in time and the fields rotate rigidly with modulated amplitude. This
result shows that, even in laminar regime (Re ¼ 120;Rm ¼ 240), realistic boundary conditions change dramatically the out-
come. Assuming periodicity or enforcing realistic boundary conditions give rise to dynamos with fundamentally different
behaviors.
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